Mark Pauly 教授跟 Geometric Computing 應該算是我想來 EPFL 的原因之一。

我總覺得 Geometric Computing 是電腦圖學的反義詞;圖學用電腦創造虛擬的世界,Geometric Computing 則在模擬真正的現實。

  • Dinasour

    • Parameter
      w = 10, obj_tol = 1E-10, theta = 1.0, beta = 0.5, c = 0.01
    • Result
      hit tolerance @ iter #17110 with energy 1.36E-4
    • Objective function trend chart
  • Dance

    • Parameter
      w = 7, obj_tol = 1E-10, theta = 1.0, beta = 0.5, c = 0.01
    • Result
      hit tolerance @ iter #29392 with energy 9.95E-5
    • Objective function trend chart
  • Gym

    • Parameter
      w = 10, obj_tol = 1E-10, theta = 1.0, beta = 0.5, c = 0.02
    • Result
      hit tolerance @ iter #35012 with energy 3.11E-5
    • Objective function trend chart

3.4.3 BFGS

  • Dinasour

    • Parameter
      w = 10, obj_tol = 1E-10, theta = 1.0, beta = 0.5, c = 0.02
    • Result
      hit tolerance @ iter #337 with energy 1.31E-4
    • Objective function trend chart
  • Dance

    • Parameter
      w = 13, obj_tol = 1E-10, theta = 1.0, beta = 0.5, c = 0.02
    • Result
      hit tolerance @ iter #494 with energy 2.01E-5
    • Objective function trend chart
  • Gym

    • Parameter
      w = 10, obj_tol = 1E-10, theta = 1.0, beta = 0.5, c = 0.02
    • Result
      hit tolerance @ iter #460 with energy 2.75E-5
    • Objective function trend chart

3.4.4 My Shape

  • Cat

    • Parameter
      w = 44, obj_tol = 1E-10, theta = 0.1, beta = 0.5, c = 0.02
    • Result
      hit tolerance @ iter #1433 with energy 1E-3
    • Objective function trend chart
  • Wu-Jing (Turnip-Head)

    • Parameter
      w = 9, obj_tol = 1e-10, theta = 0.1, beta = 0.5, c = 0.01
    • Result
      hit tolerance @ iter #1625 with energy 2.8e-6
    • Objective function trend chart
  • Helicopter

    • Parameter
      w = 150, obj_tol = 1e-9, theta = 0.5, beta = 0.5, c = 0.01
    • Result
      hit tolerance @ iter #1367 with energy 4.21e-4
    • Objective function trend chart

Laser Cutting

I choosed Wu-Jing (Turnip-Head) for cutting. However, the initial support line is too short for inserting a foot, so I made another one which is stronger.

3.5.4 Equilibrium

  • Neo-Hookean elasticity model is used

Beam

  • ρ\rho = 131131
  • young = 3×1083 \times 10^8
  • poisson = 0.20.2
  • iteration time = 10001000
  • initial step size =
    • 10710^{-7} (Gradient Descent)
    • 10810^{-8} (BFGS)

Linear Elasticity model

Gradient Descnet BFGS NGC
Residuals Total Energy

Neo-Hookean Elasticity model

Gradient Descnet BFGS NGC
Residuals Total Energy

Dinosaur

  • ρ\rho = 131131
  • young = 3×1083 \times 10^8
  • poisson = 0.20.2
  • iteration time = 10001000
  • initial step size =
    • 10810^{-8} (Gradient Descent)
    • 5×1095 \times 10^{-9} (BFGS)

Linear Elasticity model

Gradient Descnet BFGS NGC
Residuals Total Energy

Neo-Hookean Elasticity model

Gradient Descnet BFGS NGC
Residuals Total Energy

Ball

  • ρ\rho = 131131
  • young = 10610^6
  • poisson = 0.20.2
  • iteration time = 10001000
  • initial step size =
    • 10710^{-7} (Gradient Descent)
    • 10810^{-8} (BFGS)

Linear Elasticity model

Gradient Descnet BFGS NGC
Residuals Total Energy

Neo-Hookean Elasticity model

Gradient Descnet BFGS NGC
Residuals Total Energy

Beam

Without point load

  • Mesh
  • Objective

With point load

  • Mesh

Dino

Without point load

  • Mesh
  • Objective

With point load

  • Mesh

Mean Curvature Flow

Two Rings

(Max iter,ϵ1,ϵ2)=(1000,5×102,103)(\text{Max iter}, \epsilon_1, \epsilon_2) = (1000, 5 \times 10^{-2}, 10^{-3})

Average Mean Curvature Final Mini

Half Cube

(Max iter,ϵ1,ϵ2)=(1000,5×102,103)(\text{Max iter}, \epsilon_1, \epsilon_2) = (1000, 5 \times 10^{-2}, 10^{-3})

Average Mean Curvature Final Mini

Cube

(Max iter,ϵ1,ϵ2)=(2,1,1)(\text{Max iter}, \epsilon_1, \epsilon_2) = (2, 1, 1)

Average Mean Curvature Final Mini

My Shape


(Max iter,ϵ1,ϵ2)=(300,0.5,1e2)(\text{Max iter}, \epsilon_1, \epsilon_2) = (300, 0.5, 1e-2)

Average Mean Curvature Final Mini

Fitting Output

Bob

Gaussian curvature Mean curvature
Principal curvature directions Asymptotic directions

Bob

Gaussian curvature Mean curvature
Principal curvature directions Asymptotic directions